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ABSTRACT 

W e  s t u d y  in t h i s  p a p e r  s o m e  r e l a t i o n s  a m o n g  se l f - s imi l a r  a r c s ,  W h i t n e y  

se t s  a n d  q u a s i - a r c s :  we  p r o v e  t h a t  a n y  se i f - s imi l a r  a r c  o f  d i m e n s i o n  g r e a t e r  

t h a n  1 is a W h i t n e y  se t ;  g ive  a g e o m e t r i c  su f f i c i en t  cond i t . i on  for  a self- 

s i m i l a r  a r c  t o  b e  a q u a s i - a r e ,  a n d  p r o v i d e  a n  e x m n p l e  o f  a s e l f - s imi l a r  a r c  

s u c h  t h a t  a n y  s u b a r c  of  it fai ls  t o  b e  a t - q u a s i - a r c  for  a n y  t _> 1, w h i c h  

a n s w e r s  a n  o p e n  q u e s t i o n  o n  W h i t n e y  se ts .  W e  a l so  s h o w  t h a t  s e l f - s imi l a r  

a r c s  w i t h  t h e  s a m e  H a u s d o r f f  d i m e n s i o n  n e e d  n o t  b e  L i p s c h i t z  e q u i v a l e n t .  
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1. I n t r o d u c t i o n  

In 1935, Whitney [W1] published his celebrated example of a C 1 function f :  

R 2 --+ R critical but not constant along an arc 3  ̀ of Hausdorff dimension 

log 4 / log  3. In this example, the image of the critical set of f contains an interval 

which has positive Lebesgue measure. Why does the above Whitney phenomenon 

seem to contradict the Morse Sard Theorem? This is due to the fact that  the 

arc 3  ̀is a fractal and f has lower smoothness. 

Definition 1: A connected set E C R ~ is said to be a Whitney set, if there is a 

C 1 function f :  R n --+ R such that  f is critical but not constant on E, i.e., the 

grads V f iE - 0 and f i e  is not a constant. 

R e m a r k  1: By an application of the Morse Sard Theorem, the function f in 

Definition 1 cannot be sufficiently differentiable (Sard [Sa], 1942). 

How can one characterize the Whitney set geometrically? The question was 

vaguely posed in Whitney's  original paper, and can be stated as follows: Given a 

funct ion f ,  how far  f rom rectifiable must  a closed connected set be to be a critical 

set for  f on which f is not constant? 

The following two kinds of sets are not Whitney sets: 

(1) The set F holding the condition: every pair of points in F is connected by 

a rectifiable arc lying in F (Whyburn [W], 1929). 

(2) The graph G of any continuous function g: R --+ R (Choquet [C], 1944). 

Definition 2: An arc 3  ̀is called a t-quasi-arc with t >_ 1, if there is a constant 

such that  

13`(x,y)l t <- Alx - yl for any x , y  E 3`, 

where 13`(x, Y)I is the diameter of 3`(x, y ) - - t he  subarc lying between x and y. 151 

particular, a 1-quasi-arc is called a quasi-arc. 

Then in 1989, by introducing the above notion of t-quasi-arc, Norton [N1] 

obtained a sufficient condition for an arc 3  ̀to be a Whitney set: 

If 3/is a t-quasi-arc with t < dimH 3 ,̀ then 3' is a Whitney set. 

There are therefore two problems raised naturally. 

The first is whether or not the t-quasi-arc is also the necessary condition for 

an arc to be a Whitney set? Here is an open problem posed by Norton IN1]: 

Is there an arc 7 and a C 1 funct ion f critical but not constant on "~ such that, 

for  every subarc 7! of 3  ̀ on which f is not constant, ~1 fails to be a t-quasi-arc for  

any t E (1, oc)? 
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The second is: under what  condition will self-similar arcs be quasi-arcs, and 

how to classify self-similar arcs as Falconer and Marsh did for quasi-circles [FM1]. 

There is a result to this problem: 

Two self-similar arcs P and Q are quasi-isometric if and only if d imH(P)  = 

d i m u ( Q )  (Theorem in [HI, p. 116). The s ta tement  means tha t  two self-similar 

arcs are Lipschitz equivalent if and only if they have the same Hausdorff 

dimension. 

Abou t  this s ta tement ,  we will give a counterexample (Theorem 3). 

Definition 3: Two sets E and F are said to be nearly Lipschitz equivalent if, for 

any a < 1, there exists a bijection fa: E --+ F satisfying 

c l x -  yl 1/a <_ lfa(x) - fa(y)[ <_ c ' l z -  yl a (x, y e E),  

for positive constants  c and c/. In the category of compact  sets, Lipschitz 

equivalence implies nearly Lipschitz equivalence. 

In this paper,  we will prove the following results. 

THEOREM 1: Any  self-similar arc of Hausdorff dimension greater than 1 is a 

Whitney set. 

THEOREM 2: There is a self-similar arc 7 with d i m  H ~ > 1 such that every 

subarc 71 of  ~/ fails to be a t-quasi-arc for any t > 1. 

THEOREM 3: There are self-similar arcs P and Q with dimH(P) = dimH(Q) 

such that they are neither Lipschitz equivalent nor nearly Lipschitz equivalent. 

Remark 2: (1) Theorem 1 shows that  any self-similar fractal  arc is a Whi tney  

set. (Fractal means a set whose Hausdorff and topological dimension disagree.) 

Therefore, we obtain another  sufficient condition for an arc to be a Whi tney  set. 

But  the question, how to characterize the Whi tney  set, remains open. 

(2) Wi th  an application of Theorem 1 to Theorem 2, we give an affirmative 

answer to the open problem of Norton.  

(3) Theorem 2 says tha t  self-similar arcs may not be quasi-arcs. In Section 5 

of  this paper,  a sufficient condition (Proposi t ion 3) is provided for a self-similar 

arc to be a quasi-arc. Using this condition, for every 1 < s < 2, we construct  a 

self-similar planar arc which is a quasi-arc of Hausdorff  dimension s. 

(4) Theorem 3 gives a counterexample of the conclusion in [HI. In fact, we can 

construct  two self-similar arcs P and Q such tha t  d i m u ( P )  = dimH(Q),  and P is 

a quasi-arc but  Q is not. Since the proper ty  of being quasi-arc is invariant under 
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bi-Lipschitz mapping, we conclude that P and Q are not Lipschitz equivalent. 

Falconer and Marsh [FM2] pointed out that self-similar sets of Cantor type with 

the same dimension need not be Lipschitz equivalent, but are nearly Lipschitz 

equivalent. However, the result of this type does not work for self-similar arcs, 

as Theorem 3 shows that P and Q are not nearly Lipschitz equivalent. 

The rest of the paper is organized as follows: in Section 2, we introduce some 

preliminaries of self-similar arcs. Section 3 is devoted to the proof of Theorem 

1; the main idea is to estimate a probability measure defined on an appropriate 

Cantor subset of the self-similar arc. Section 4 is devoted to the proof of Theorem 

2, that is, we give an example of a self-similar arc which is not a t-quasi-arc. The 

construction is based on some well-approximable irrational numbers. In Section 

5, we give a geometric sufficient condition which guarantees a self-similar arc to 

be a quasi-arc. The last section is devoted to the proof of Theorem 3. 

2. Pre l iminar ies  

A mapping S: R ~ --+ R '~ is called a contractive similitude if there is a ratio p 

with 0 < p < 1 such that, for any x, y E R n, 

Is(~) - s(y)l = ~l~ - yl- 

Suppose $ := {Si . . . . .  Sin} is a family of similitudes with contraction ratios 

Pl,. • • ,  Pm. Then there exists a unique compact set E such that 

E = 0 &(E); 
i= l  

the set E is called the self-similar set generated by g [Hu]. 

Let dimH(.) denote the Hausdorff dimension, and ~s  the Hausdorff measure 

of dimension s. Throughout the paper, an arc means a homeomorphic image of 

the unit interval [0,1]. 

Definition 4: An arc 7 is called a self-similar arc, if 7 is generated by a family 

of contractive similitudes S = {Si}l<i<m satisfying 

(1) S i(3') n Sj(~/) is a singleton for li - J l  = 1; 

(2) Si(7) A Sj(~/) = 0 for li - J l  > 1. 

We denote by 3' = 3'(8) the self-similar arc generated by the family of contrac- 

tive similitudes S = {Si}l<i<m. 
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Remark  3: Let s :=  dimH "?; then by tile definition of a self-similar arc, we get 

(*) ~*[Si(7)  M Sj(7)] = 0 for i # j. 

By [Se], the family S fulfills the open set condition. Consequently, s = dimH 

is the solution of the equation 

m 

Z ( p i ) S  = 1, 
i = 1  

m m " [ H u ] .  where {Pi}i=s are contract ion ratios of {Si}i=l,  see 

In general, the formula (*) camlot  guarantee tha t  7 is an are. For example, a 

fractal including three similar branches which share one endpoint  is not an arc. 

Let E = {1 . . . . .  m} be the finite set of m symbols, let E*(n) = { i s  . . . .  in[it E E 

for all t} be the set. of the sequences of length n, and E* = Un>0 E*(n) the set 

of the sequences of finite length. 

For any i* = i l l 2 " "  ik E E* (k), write Si* = Sil o . . .  o Sik ; then the contract ion 

ratio of Si* is p( i* ) = pi~ Pi2 "'" Pi~. . 

The following lemma shows tha t  by selecting an appropriate  family of simili- 

tudes, the endpoints  of a self-similar arc are fixed points of two similitudes. This 

lemma is useflfl for Proposi t ion 3 in Section 5. 

LEMMA 1: Suppose 2 is a self-sinfilar arc with endpoints a, b. Then there exists 

a family of  similitudes S = {Si}t<i<N such that 7 = 7(S) and a = Sl(a) ,  

b = SN(b). 

Proo~ Suppose 7 = "~,(T) with similitudes T = ~T .t '* and a C Ts(7),  b C t ~ J i = l '  

By the definition of self-similar-arc, we see tha t  a is either T~(a) or Tl(b). 

Similarly, b = Tin(a) or T,~(b). 

follows. 
Case 1. 

There are therefore only 4 possible cases as 

Let S = {Tilisi3i4 : 1 

a = T l ( a ) ,  b = T m ( b ) ;  

Case 2. a = T t ( a ) ,  b = T m ( a ) ;  

Case 3. a = T t ( b ) ,  b = T m ( a ) ;  

Case 4. a = T l ( b ) ,  b = T m ( b ) .  

il,  i2, i3, i4 _~ m}; then 7 = 7(S).  Hence tile conclusion 

of the lemma follows by rearranging the indices of the elements of S. For example, 

in the case 2, set S1 = T l s l S  and Sin4 = Tmllm; then a and b are fixed points of 

$1 and S,~4 respectively. 1 
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3. P r o o f  o f  T h e o r e m  1 

We need a special case of the Whitney Extension Theorem which is stated as 

follows [W2]. 

LEMMA 2: Suppose E C R n is compact and f :  E -+ R is a real function. I f  for 

any e > O, there exists (i > 0 such that for any x, y E E with 0 < Ix - Yl < 5, 

I f ( x )  - f ( y ) l / l x  - y] < ~, 

then there is a C 1 extension f :  R n ~ R o f f  such that f i e  = f and V f iE  -- O. 

Now we prove Theorem 1 by the following several steps. 

STEP 1: Find n E N and a subset A C E*(n) such that  

(H1) Sa; (7) N Sa~ (7) : 0 for any distinct pair a~, a~ E A; 

(H2) E P(a*)S = 1 for some constant s > 1; 
a*EA 

(H3) for any a* E A, the endpoints of 7 do not belong to Sa. (7). 

To get (H1), take s -  E (1, dimH 7); since ~-~a*eE*(n)P(a*) dimH ~ = 1, we have 

1 
a *  

= l / [ m a  x pi]n( dimg ~--s- ), 

which goes to infinity as n goes to infinity. Thus for n large enough, we can 

divide E*(n) into two subsets A 1 and A 2 such that  for i = 1, 2, and any distinct 

pair a*, b* E A i, Sa.  (7) ~ ~b* (7) : O. 

Without loss of generality, we assume that  

E P(a*)~- > 2. 
a*EA 1 

Delete at most two elements of A 1 containing the endpoint of 7, and denote 

by A the obtained set. Then A C E* (n) and, for n large enough, we have 

E P(a*)S- -> E P(a*)S- -2[miaxp(i)]ns-  > 1, 
a*EA a*EA 1 

thus we can find s E ( s - , d i m H  7) such that  ~a*eA p(a*)* = 1. 

By the above discussion, we get (H2) and (H3). 
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STEP 2: Cons t ruc t  a function f on 7- 

Let  p be a mass  dis t r ibut ion satisfying 

{ [1-[~1P(a*)] s if a~' e A for every i, 
P( Sa; o Sa~ o . . .  o Sa* k ('7)) = 0 otherwise. 

Then  #('7) = 1 fl'om the fact tha t  ~-:~a*em P(a*) s = 1, so p is a probabi l i ty  measure  

on '7. 

Fix one endpoint  e of the arc '7. We define a function f :  '7 --+ R in the following 

way: for any x E "7, 

(1) ] (x)  = ~b(e ,  x)], 

where '7(e, x) is the subarc of '7 between e and x. 

STEP 3: Using L e m m a  2, es t imate  If(z)-f(y)l for x , y  E '7. Ix-y] 
Since the self-similar arc '7 can be generated also by {Sa*}~*eE*(n), consider 

now a symbolic  sys tem generated by the finite set E* (n). Set 

A* = {a~a;...a*~l a t • E * ( n ) , k  > 1,1 < i < k}, 

A*(A) = {a*la~.. a*k. ] * • a~ • A , k > l , l < i < k } .  

On A*, we define a par t ia l  order as follows: 

• * • . . a *  * • * * . -  * 

ala2 kak+l . . a t  ..~ a la  2 "ak~ 

where a* • E*(n) .  

Given dist inct  points  x, y • '7, suppose c* • A* is a minimal  element under  

the above par t ia l  order such tha t  x , y  • S~.('7). Then  there are two distinct 

sequences d~, d~ • E*(n)  such tha t  

x • Sc,[Sd;('7)], ~ • s~,[sd;('7)]. 

Now we distinguish two cases. 

CASE I: Salt ('7) ;h Sd~ ('7) = O. 

From the definition of f ,  we have 

(2) I f (x)  - I(Y)I < , [S~,(7)]  = p(c*) ~. 

Let 5t > 0 be the least distance between any two disjoint subarcs Sb~ (7) and 

S~( '7)  with b~,b~ • E*(n).  Then  

I x  - yl >_ d(S~,[S~; ('7)], S~,[Sa; ('7)]) 
(3) 

> p(c*)d(Sd; (7), Sd~ ('7)) _> p(c*)~l; 
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from (2) and (3), 

(4) I f (z)  - f(Y)] < (51)_1.  p ( c , ) S _ l .  
I x - ~ l  - 

CASE II: Sd~ (7) N Sd~ (7) # O. 
In this case, suppose the singleton Se.[Sd; (7)] C] S~.[Sd~ (7)] = {z}. 

Prom the definition of f ,  

(5) I f ( x )  - f ( Y ) l  = 0 

holds in the following two situations: 

(D1) c* ~ A*(A) (since p[S¢*(7)1 = 0); 

(D2) c* • A*(A), and neither sequence d~, d~ belongs to A (since #[Sc*d¢ (7)] = 

~[se.d~ (~)] = 0). 
In the situations other than above, we suppose c* • A*(A) and at least one of 

di belongs to A. From (H1) of the construction of the set A, one may assume 

d* 1 • A, d~ ¢ A. Assume furthermore x • S~.[Sd;(S~*('7))], z • So.[Sd~(SI.(',/)) ] 
with e*, f* • E*(n). 

If e* = f*,  since z is an endpoint of S,..[Sa*, ('~)], it follows from (H3) that  

(6) If(x) - f(y)[  = If(x) - f (z) l  = O. 

If e* % f*, then [ f ( x ) - f ( y ) [  _ #[S~,(7)] = p(c*) 8. Let 52 > Obe the least 

distance between any two disjoint subarcs Sb~ [Sd* (7)] and Sbi (7))with b~, b~, d* • 
~*(n). Then 

Ix - y[ > p(c*)d(Sd7 (S~. (7)), Sa; ('~)) > p(c*)52, (7) 

so 

(s) I f ( x )  - f ( ~ ) l  < (62) -1  . p ( c * F  -~ .  
Ix - y l  

From (4)-(8), for any distinct points 3:, y G % we have 

If(x) - f(Y)l 
_< f i x -  yl ~-1, 

Ix - y l  

where r is a positive constant. 

Since s > 1, by using Lemma 2, we can extend f to a C 1 function f :  R n --* R 

such that 

f l ~ = f  and Vfl  ~ - 0 ,  

i.e., the self-similar arc 7 is a Whitney set. | 
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4. Proof  of  Theorem 2 

For the proof  of Theorem 2, we need the following Lemma of Diophantine 

approximation.  

LEMMA 3: Let x be an irrational number  with tile following property: for any 

fixed positive integer too, there exist infinitely many integer pairs (m, n) E N x N 

such that 
x - 1 771 ~ -  77 l  0 < e _ ~ 2  . _ _  

71, - -  11 ,2  " 

Then the set of irrational numbers  with above property is dense in ~+. 

Proof: Define the sequence {an}. ~ 1 by 

,_, 2~: an = e-'~ /~t if n =  f o r k E N U { 0 } ,  
0 if 2/: < n < 2 k+l  for some k E N; 

then }-~,>1 a ,  < ~ .  Set 0 = 2 k (k E N); then there exist infinitely many integers 

Q such that  

II ,,<_Q ~<Q 

where the Euler function ~(n) = #{1  _< m _< n: g.e.d. 0n,  n) = 1}. The above 

inequality holds since ~;(2 k) -- 2 ~'-1 . Then from the Duffin-Schaeffer Theorem 

[DS], for almost all x C R, there are infinitely many pairs of integers (n ,m)  

satisfying [nx - m[ < a,~ with (n ,m)  = 1. This yields the conclusion of the 

lemma. I 

To prove Theorem 2, we will construct  a self-similar arc illustrated as in Figure 

1 : A A o A 3 A 7  is an isosceles triangle with IAoATI = 1, the base angle 0 is small 

enough. Let K be the convex closure of this triangle. 

A 3 

Ao a A1 A4 A6 b A7 
~'~ . . . . . . .  "4 I'~ --4 

Figure 1. 
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Consider seven similitudes Si: K -+ Ki (see Figure 1) which satisfy 

Si(Ao) = Ai, S i ( A 7 )  = Ai+I, 0 < i < 6, 

and: 

(C1) IAoAll = a, IA6ATI = b such that logb/loga is a positive irrational 

number fulfilling the condition of Lemma 3; this is possible since such numbers 

are dense in R + by Lemma 3; 

(C2) ]A4Ahl = a m°lA3A41, where the integer m0 > 0 is large enough; 

(C3) K3 ~ h'4 = A4C C A4B. 

Since 8 is small enough and {Ki}i are similar to K,  we see that from Figure 1 

6 

U int(Ki) C int(K) and int(Ki) n in t (h~)  = O for i # j, 
i=0  

where int(A) denotes the interior of the set A. Let E denote the self-similar set 

generated by the similitudes {S/}0</_<6. 

Remark 4: Although the intersection of K 3 and h'4 is the segment AaC, the 

intersection of/(3 FIE and Ka N E consists of just one point A4. 

Now we are going to show that the set E is a self-similar arc; in fact, we will 

prove that E can be parameterized by the following homeomorphism 7: [0, 1] -+ 

E: 

( n ~  1 a n )  7 = lim S a l ° S a ~ ° " ' ° S a , ( E )  E R  2 (O<aN<_6). 
n ---~ o o  

P R O P O S I T I O N  1: E is  a n  a r c .  

Proof: It suffices to show 

{ Si(E) n Sj(E) : 0 
Si(E) N S{+I(E) = {Ai+I} 

Since E C K, Si(E) C Si(K) : Ki. 

(1) If li - Jl -> 2, then Iii A Kj = 0, which yields 

Si(E) A Sj(E)  -- O. 

(2) If i # 3, then Ki N Ki+l = {Ai+I} (see Figure 1), so 

if ] i -  Jl -> 2, 
i f 0 < i < 6 .  

Si(E) N Si+I(E) = {Ai+l}. 
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(3) Now consider i = 3. In this case/£3 N [(4 is the line segment A4C; notice 

that A4B and A4C are the images of A3A7 and AoA3 under the mappings $3 

and $4 respectively. Therefore, 

S3(E) N S4(E) = ( E  n BA4) n (E n A4C) 

=S3(A3A7 n E) N S4(AoA3 N E). 

From the structure of E, we see that 

AoA3 n E = {Ao, A3 . . . . .  S~n(A3) . . . .  } = {Ao} U {S~n(A3)}m>O. 

On the other hand, since So(x) = (1 - a ) A o  + ax, we have S~(A3) = 

(1 - am)Ao + areA3 (m _> 0), thus 

AoA3 n E = {Ao} U {(1 - am)Ao + amA3}m>o. 

In the same way we obtain 

A3A7 O E = {A7} U {(1 - bn)A7 + bnA3}n>o . 

From the above discussion, we get 

S3(E) n S4(E) = {A4} U G, 

where 

G = {(1 - am)An + amC},,>o N {(1 - bn)A4 + bnB},,>_o. 

We conclude that G is empty. Otherwise, suppose x E G; then there exist 

integers ml ,n l  > 0 such that ]xA4] = IA4Btb "~ = ]A4C]a ml. But from the 

condition (C2) of the construction of E, we have 

which imply 

IA4BI :IA3A4I " IA3A'71, 

IAaCl :IA4A5I • IAoA31 = am°lA3A4l" [A3A71, 

amo+ml = b nl 

with mo > O, ml ,n l  >_ O, and nl # 0 obviously. Therefore logb/loga = 

(ml + mo)/n,t is a rational number, which contradicts the choice of the irra- 

tionality of log b/log a. We thus complete the proof of the proposition. | 
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PROPOSITION 2: Any  subarc of  E fails to be a t-quasi-arc for any t >_ 1. 

Proo£: Because of the self-similarity of E ,  it. suffices to show tha t  E is not a t- 

quasi-arc for any t _> 1. Suppose the conclusion is not true; then E is a t-quasi-arc 

for some t _> 1, so there exists a positive constant  A such tha t  

Iw(~,u)l * _< a l x - u l ,  V~,y~ ~. 

Consequently, 

log Ix - Yl 
(9) t > lira sup 

- I ~ - y L ~ O  log 17(x, y)l" 

From Lemma 3, there exist infinitely many pairs of integers (m, n) C N x N 

such tha t  
1 logb m + m o  < e _ ~ . _ _  

log a n - n 2' 

which implies 

(10) I(m + m 0 ) l o g a  - n l o g b  I _< e -''~ • I logal 
rt 

Fix a pair (m, n) satisfying (10), and take 

x = (1 - am)A4 + amC, y = (1 - bn)A4 + bnB. 

It follows fi'om the proof  of Proposi t ion 1 that  x, y C E.  Moreover (see Figure 

1), 

Ix - yl -- I IA4 - xl - IA4 - Yl I = I amlA4CI - b'~IA4BI I 

= a "~lA4CI IA4Aal b" .IA4BI 
IA4BI b~ " IA4BI = amlAA&l 

=la  m°+m - b~l • IA4BI, 

the last equality being due to (C2). 

On the other hand, since A4 ~ 7(J', Y), 17(z,y)l-> IA4 - y [ - -  hnlA4BI, thus 

(11) log[x - Yl > l°g(] a'~+m° - b~1-1) - l o g  IA4BI 
log I~(x, y)l - n[ log bl- log IA4BI 

Notice that  I et - 11 _< 2It[ if Itl is small enough, therefore 

log(le t -  11-1) > log(It l-1/2) .  
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Let t = (m +'too) loga -7~  logb; then from (10), Itl is small if n is large enough. 

Hence 

log(l<,."+mo - b - I - l )  = log(la '*+"O/b n _ 11 -~) + nl logbl 

= l°g([ e(m+m°)l°ga-nl°gb - II -~) + *~l logb] 

_>log( e - n2 .  I l ° g a l - 1 / 2 )  + nllogbl 
n 

_>n ') + 'n. I logb I, 

which yields fi'om (11) 

log Ix - ~;~ + n l  logbl - log ]A4B I 
>_ > con. 

log ['f(x, Y)t n[ logb[ - log [A4B[ - 

for some positive constant  ct. Since there are infinitely many pairs (m, ~) satis- 

fying (10), it. follows from (9) that. t >_ +cx~. The  proposit ion follows from this 

contradiction. 1 

Theorem 2 follows fi'om Proposi t ions 1 and 2. 

5. C o n d i t i o n  for self-s imilar arcs to  be  quasi -arcs  

In this section, we will give a sufficient condition such tha t  a self-similar arc is a 

quasi-arc. 

Suppose that  the self-similar arc 7/is generated by the contractive similitudes 

{S.i}~ 1 with S~(r/)A Si+~(~]) = { A i } ( i  = 1 . . . . .  m -  1). We choose always the 

angle 0 < ZxAiy  _< :r whenever .r E Si(~]) and y E S~+1(7/). 

PROPOSITION g: S u p p o s e  tha t  there is a cons tan t  O* > 0 such tha t  the angle 

Z x A i y  >_ O* whenever  x E Si(~l), y E Si+l('rl) (1 _< i _< m -  1). T h e n  ~1 is a 

quasi-arc. 

R e m a r k  5: (1) The arc is not restricted on the plane, since Z:rA iy  may be the 

angle in the space of higher (timension. 

(2) We may suppose 0* < :r/2. 

(3) Notice tha t  in the exanlple of the last section, we have Z B A 4 C  = 0, which 

doesn ' t  satisfy the condition of the proposition. 

Proof'. By Lemma 1, without  loss of generality we assume tha t  two endpoints 

A0, A,,~ of r /are fixed points of $1 and S,,  respectively. As usual, for any sequence 

i l ' "  "i k C { l , . .  'D1.} ~',, denote "qil..-i,. ( il'"ik)(']])- 
Suppose :r, y E '11 with .r ¢ y, and suppose il . . . .  it. is the sequence such tha t  

x, y C r]i ~...ik but  for any ik+ l ,  ~li~...i~ik+l contains at most one of x and y. Let. 
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= (S~l...ik)-l(x) and ~ = (Sil...ik)-l(y). Then  there exist i ¢ j such tha t  5: E 17i 

and ~7 C qj. Thus we have 

( 1 2 )  1 ' 7 ( x , y ) I  _ [ f l ~ = ~  Pi~]"  1'1(~,17)1 _ I ' 1 ( ~ , ~ ) 1  
Ix  - ~1 [H~=, p ~ ]  I~  - 171 IJ: - 171 " 

For es t imat ing  ~ ,  I~-nl we distinguish two cases. 

CASE 1: I J - - i l >  1. 

In this case, the subarcs ~7i, rlj are disjoint. Since 117(2,17)1 -< 1~71, we have 

12--171 ~ d(iTi,17j ) ~_ m i n  d ( l ? i , , ~ 7 i ~ ) : = D > 0 .  
1i1--i2i>1 

From (12), we have 

(13) I~(~,~)1 ~ (D- l i t / l )  • 1~ - 171. 

CASE 2: j -- i = 1. 

Let  A be the common  point  of 17~ and ~Tj- Since Ao and Am are the endpoints  

of the arc by assumpt ion,  we have either d -- Sj (do) or Sj(Am). Withou t  loss of 

generality, assume A = Sj(Ao). Since Ao is the fixed point  of $1, for any n _> 0, 

A = Sj(s1)n(Ao) e Sj(s1)n(?7). Hence for the point  <~ ¢ A, there exist no _> 0 

and io • 1 such tha t  !7 E Sj(S1)n°Sio(~7). Notice tha t  ~7(A,~) C Sj(S1)n°(?7). 
Then  

(14) 117(A, 17)i <~ ISj(s1)n°(?7) I = pj(Pl)n°llTI. 

On the other hand, since A = Sj(S1)i~°(Ao) and 17 E Sj(s1)n°Sio(?~), 

I d - Yl >- d[d, Sj(S1)i~°Sio(*J)] 
(15) >_ d[Sj(S1)n°(Ao), Sj(S1)n°Sio(17)] 

> pj(pi)n°d[do, Sio(l?)] > pj(Pl)n°5 * 

where 5* := min[mint>l d(do ,  ~Tt), mint<m d ( d m ,  ~Tt)] > 0. 
From (14) and (15), if I) • A or .~ = A, then 

(16) 177(A, 17)[ -< (5")-11~71 " 117 - d l .  

Notice tha t  if 17 = A, the above inequality holds trivially. 

By  the same way, we get 

(17) 1~7(2, A)I <_ (5")-11,[ • 12 - A I. 
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Since Z2Afl >_ 0* > 0 by the hypotheses,  we get 

I~ - ~12 = 12 - AI 2 + 1~3 - AI 2 - 2 cos(Z:~A:0). I~ - AIIt3 - AI 

> ( 1  - cos  0")(1~: - AI 2 + lY - AI 2) + c ° s  0 * ( l ~  - A I -  I~? - AI) e 

_> 1 - cos0*2 [2. (l~ - AI 2 + lY - AI2)] (using cos0* > 0) 

>s in2(0*/2)( I  ~ -  A I + 1~?- AI) 2 (using 2(c ~ + d  2) _> (c+d)2), 

which yields 

(18) 12 - ~0l _> s in(0*/2) .  (l~ - AI + I~ - AI). 

From (16), (17) and (18), we have 

(19) 12 - Yl >- s in(0*/2) .  [12 - A I + I/? - AI] 

>_k'[10(:P, A)I + I~(~, A)I] -> k'[~(2, B)l, 

where constant  k p > O. 

From (13) and (19), we prove tha t  ~l is a quasi-arc.  

R e m a r k  6: The  classical von Koch curve is a quasi-arc; in fact, we can take 

0* = 7~/3 in this case. 

A5 A o  a A l  A 4  a 
~ 1 

Figure 2. 

In Figure 2, AiAi+I±Ai+IAi+2 for 0 < i _< 3, 0 < ~ /4 ,  IAoAsI = 1, 
0 < a < 1/2, and t = tan(0)  < 1. In the isosceles tr iangle AAoBA5, the 

s t ructure  of five small  similar tr iangles provides a self-similar arc. I t  follows from 
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Proposi t ion 3 tha t  it is also a quasi-arc. The Hausdorff dimension s of the arc 

satisfies the equation 
2[a s + tSa s] + (1 - 2a) ~ = 1, 

which implies s --+ 1 as a --+ 0, and s --+ 2 as a --+ 1/2, t --+ 1. Consequently, we 

have the following corollary. 

COROLLARY 1: For any  s wi th  1 < s < 2, there is a self-similar quasi-arc o f  

Hausdorf f  dimension s. 

6. P r o o f  o f  T h e o r e m  3 

Suppose Q is a self-similar planar arc such that  any subarc of Q fails to be a t- 

quasi-arc for any t. By Corollary 1, we can select another  self-similar quasi-arc P 

with dimH P = dimH Q. We will show tha t  P and Q are not Lipschitz equivalent 

or nearly Lipschitz equivalent. In fact, if P and Q are Lipschitz equivalent or 

nearly Lipschitz equivalent, then there exists a bijection fa: P --+ Q with a < 1 

such tha t  for any x, y E P ,  

c[x - y[1/a <_ [Ia(x) - fa(Y)l _< c'lx - yl ~, 

where c and c / are positive constants.  Since P is a quasi-arc, there is a con- 

s tant  A > 0 such tha t  for any x , y  c P ,  [P(x ,y)]  <_ AIx - y[. Notice tha t  

Q(A(x), A(y)) = A(P(x, y)); we have 

IQ(A(x), fa(y))[ i/a~ =lA(P(x, y)l 1/~ <_ (c') I/a~ IP(x, y)l 1/" 

~_(c')l/a2/~l/alx - -  yl v~ <_ [(c')l/a2 )~i/a/c] " Ifa(X) - f~(Y)l 

whenever fa(X),  .fa(Y) E Q. That  shows Q is a 1/a2-quasi-arc, which contradicts  

the choice of Q. 
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